

General Certificate of Education Advanced Level Examination
June 2012

Mathematics

Unit Further Pure 2

Thursday 31 May 20129.00 am to 10.30 am

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

1 (a) Sketch the curve $y=\cosh x$.
(b) Solve the equation

$$
6 \cosh ^{2} x-7 \cosh x-5=0
$$

giving your answers in logarithmic form.
(6 marks)

2 (a) Draw on the Argand diagram below:
(i) the locus of points for which

$$
|z-2-3 i|=2
$$

(ii) the locus of points for which

$$
\begin{equation*}
|z+2-\mathrm{i}|=|z-2| \tag{3marks}
\end{equation*}
$$

(b) Indicate on your diagram the points satisfying both

$$
|z-2-3 i|=2
$$

and

$$
|z+2-\mathrm{i}| \leqslant|z-2|
$$

(l mark)

3 (a) Show that

$$
\frac{2^{r+1}}{r+2}-\frac{2^{r}}{r+1}=\frac{r 2^{r}}{(r+1)(r+2)}
$$

(b) Hence find

$$
\sum_{r=1}^{30} \frac{r 2^{r}}{(r+1)(r+2)}
$$

giving your answer in the form $2^{n}-1$, where n is an integer.

4 The cubic equation

$$
z^{3}+p z+q=0
$$

has roots α, β and γ.
(a) (i) Write down the value of $\alpha+\beta+\gamma$.
(ii) Express $\alpha \beta \gamma$ in terms of q.
(b) Show that

$$
\alpha^{3}+\beta^{3}+\gamma^{3}=3 \alpha \beta \gamma
$$

(c) Given that $\alpha=4+7 \mathrm{i}$ and that p and q are real, find the values of:
(i) β and γ;
(ii) p and q.
(d) Find a cubic equation with integer coefficients which has roots $\frac{1}{\alpha}, \frac{1}{\beta}$ and $\frac{1}{\gamma}$.

5 The function f , where $\mathrm{f}(x)=\sec x$, has domain $0 \leqslant x<\frac{\pi}{2}$ and has inverse function f^{-1}, where $\mathrm{f}^{-1}(x)=\sec ^{-1} x$.
(a) Show that

$$
\sec ^{-1} x=\cos ^{-1} \frac{1}{x}
$$

(b) Hence show that

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\sec ^{-1} x\right)=\frac{1}{\sqrt{x^{4}-x^{2}}}
$$

6 (a) Show that

$$
\frac{1}{4}(\cosh 4 x+2 \cosh 2 x+1)=\cosh ^{2} x \cosh 2 x
$$

(b) Show that, if $y=\cosh ^{2} x$, then

$$
1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=\cosh ^{2} 2 x
$$

(3 marks)
(c) The arc of the curve $y=\cosh ^{2} x$ between the points where $x=0$ and $x=\ln 2$ is rotated through 2π radians about the x-axis. Show that the area S of the curved surface formed is given by

$$
S=\frac{\pi}{256}(a \ln 2+b)
$$

where a and b are integers.

7 (a) Prove by induction that, for all integers $n \geqslant 1$,

$$
\frac{3}{1^{2} \times 2^{2}}+\frac{5}{2^{2} \times 3^{2}}+\frac{7}{3^{2} \times 4^{2}}+\ldots+\frac{2 n+1}{n^{2}(n+1)^{2}}=1-\frac{1}{(n+1)^{2}} \quad(7 \mathrm{marks})
$$

(b) Find the smallest integer n for which the sum of the series differs from 1 by less than 10^{-5}.
(2 marks)

8 (a) Use De Moivre's Theorem to show that, if $z=\cos \theta+\mathrm{i} \sin \theta$, then

$$
\begin{equation*}
z^{n}+\frac{1}{z^{n}}=2 \cos n \theta \tag{3marks}
\end{equation*}
$$

(b) (i) Expand $\left(z^{2}+\frac{1}{z^{2}}\right)^{4}$.
(ii) Show that

$$
\cos ^{4} 2 \theta=A \cos 8 \theta+B \cos 4 \theta+C
$$

where A, B and C are rational numbers.
(4 marks)
(c) Hence solve the equation

$$
8 \cos ^{4} 2 \theta=\cos 8 \theta+5
$$

for $0 \leqslant \theta \leqslant \pi$, giving each solution in the form $k \pi$.
(d) Show that

$$
\int_{0}^{\frac{\pi}{2}} \cos ^{4} 2 \theta \mathrm{~d} \theta=\frac{3 \pi}{16}
$$

